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Note 

Removal of Infinite Eigenvalues in the Generalized 
Matrix Eigenvalue Problem 

1. INTRODUCTION 

We consider here the generalized matrix eigenvalue problem 

CA(P) - WP)I x = 0, (1) 

where A and B are complex n x n matrices which depend on a parameter p. 
We are primarily concerned with the case where B is singular. In many physical 

problems, Eq. (1) with ) B 1 = 0 arises from discretization of an eigenvalue problem 
for an ordinary (or partial) differential equation system in which one or more of the 
boundary conditions (or differential equations) do not involve the eigenvalue 1. The 
most widely used methods for solving (1) are the QZ and LZ algorithms [ 1,2]. 

Although our focus is on the general case of (l), we will introduce the topic in 
terms of the Orr-Sommerfeld equation governing the linear stability of parallel 
shear flows. In the case of plane Poiseuille flow between parallel plates, the 
Orr-Sommerfeld equation is 

{ (0’ -a*)* + iu Re[(c - U(z))(D* - a’) + D*U(z)] > Y(z) = 0 (24 

Y(-l)=DY(-l)= Y(l)=DY(l)=O (2WW 

where D = d/dz, c is the eigenvalue which is to be computed, Re is the Reynolds 
number, a is the wavenumber, and U(z) = 1 -z* is the basic velocity profile whose 
stability is being studied. 

When (2ak(2e) are discretized, a homogeneous set of linear algebraic equations 
of the form (1) is obtained. If a finite difference approximation has been used, then 
four identically zero rows of B will be associated with the finite difference 
approximations to the boundary conditions (2b)-(2e) [3]. If a spectral technique 
has been employed, in which the expansion functions do not individually satisfy 
(2b)-(2e), then four equations appearing in (1) must be used to satisfy these bound- 
ary conditions [4,5], and B will again have four rows of zeros. 

In the sequel, we assume that the rank of B is n-k, where k is the number of 
zero rows of B. As a result, the determinantal polynomial of (1) will be of degree 
m d n -k. Hence, (1) will have fewer than n finite eigenvalues. The number of 
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infinite eigenvalues of (1) is generally k, but may be less, according to the 
dependence of A and 6 on the parameter p [6]. In what follows, we assume that 
the number of infinite eigenvalues is k. 

In the Orr-Sommerfeld (2a)-(2e) and other hydrodynamic and convective 
stability problems, solution of the matrix eigenvalue problem (1) frequently gives a 
number of “spurious” eigenvalues in addition to the eigenvalues of interest. These 
spurious eigenvalues are frequently of very large magnitude, do not converge as the 
order of the discretization is increased, and do not correspond to eigenvalues of the 
differential equation eigenvalue problem [7]. 

As an example we cite the spurious modes found in a Chebyshev-tau discretiza- 
tion of the Orr-Sommerfeld problem [7], in which the magnitude of the spurious 
eigenvalues grows like n2. In this case, roundoff and other numerical errors may 
cause the truly infinite eigenvalues of (1) to appear large and finite, thus leading to 
confusion between infinite and “spurious” eigenvalues. 

We note that Zebib [8] has recently described a spectral method for the 
Orr-Sommerfeld problem which, by employing functions which individually satisfy 
the boundary conditions in which the eigenvalue is absent, yields a nonsingular 6. 
The resulting eigenvalue problem is free of infinite or spurious eigenvalues. This 
method can be generalized to a broad class of ordinary differential equation eigen- 
value problems. 

There are, however, many other situations in which (1) arises for which it is not 
possible or practical to discretize the underlying problem so that B is nonsingular. 
As examples, we mention the solution of Helmholtz’s equation (frequently on an 
irregular domain) by finite difference or finite element techniques [9], and the solu- 
tion of structural dynamics problems in which rigid body constraints or other 
(linear) algebraic (i.e., nondifferential) equations are included in the discretized 
equations. In these cases, it would be highly desirable to have available a method 
which can remove the infinite eigenvalues of (1) without modifying [9] the finite 
ones. 

2. CURRENT METHODS FOR REMOVING INFINITE EIGENVALUES 

If A is nonsingular, a simple way to handle (1) is to consider the reciprocal 
problem [lo] : 

(B-pA)x=O, (3) 

where p = l/L It is clear that the “missing” solutions of the characteristic equation 
of (1) correspond to zero eigenvalues of (3) which in turn may be referred to as 
infinite eigenvalues of (1). This method, although simple, has a disadvantage in the 
case where some of the finite eigenvalues of (1) are very large. The reason is that 
due to roundoff error, infinite and very large eigenvalues of (1) (or zero and very 
small eigenvalues of (3)), may be indistinguishable. 
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An alternative method is to reduce the order of (1) to the rank of B in a manner 
such that the finite eigenvalues of the system are preserved [3, 111. Known as the 
“reduced” method, this technique, which is in principle capable of removing k of the 
infinite eigenvalues from the problem altogether, employs a sequence of elementary 
row and column operations on A and B. It requires O(kn2) multiplications. 

It is clear that, if high accuracy (large n) is desired, use of the “reciprocal” 
method [lo] will not permit a clear distinction between the infinite eigenvalues of 
(1) and those which grow like, say n 4. For that reason, the “reduced” method 
[ 3, 111 was used in the calculations of Gary and Helgason [3] and Orszag [4]. 
Here, we present an alternative to the “reciprocal” and “reduced” methods which 
avoids the disadvantages of the former and requires fewer operations than the 
latter. 

3. THE MAPPING OF THE INFINITE EIGENVALUES 

We describe below a transformation of equation (1) which preserves the finite 
eigenvalues of (1) but which maps k of the infinite eigenvalues to one or more 
specified points in the complex plane. This allows the infinite eigenvalues of (1) to 
be easily distinguished from any that are of large but finite modulus, such as 
“spurious” eigenvalues which grow like n4. 

Assuming that (1) has been arranged so that the k zero rows of B are at the 
bottom, we have 

B = [B’,O,]’ 

where B’ is an (n -k) x n matrix and 0, is a k x n matrix of zeros. We then 
premultiply (1) by 

02 1 &+E, ’ 

where I, is the identity matrix of order r, O2 is a zero matrix of order (n-k) x k, 
and Ek is a diagonal matrix of order k with elements 

where the constants gi are arbitrary. Thus, (1) yields 

(CA-XB)x=O, 

from which it follows that 

O=JC(A-~B)I=ICI1A-IB)=IA-1Bl fj (2-0,). 
j= I 

(4) 



REMOVAL OF INFINITE EIGENVALUES 245 

Thus, the new eigenvalue problem delined by the leftmost equality in (4) has all of 
the finite eigenvalues of (1) but none of the infinite ones associated with the zero 
rows of 6, as the latter have been mapped to specified points in the finite plane. 
Now, any “spurious” eigenvalues of large modulus are not associated with the zero 
rows of B, but must instead be due to the discretization technique employed. In the 
case where the original eigenvalue problem has eigenvalues near one of the cis, it 
may be desirable to select other values of aj in order to avoid bothersome root 
clustering. 

In practice, the transformation of Eq. (1) to Eq. (4) requires only kn multiplica- 
tions, because 

CB=B, 

and 

CA= F+IG, 

where F and G are square matrices of order n which do not depend on A. Thus, 
the leftmost equality in (4) can be written as 

O=JF+A(G-B)I, (5) 

where G - B has no zero rows. Thus, all of the infinite eigenvalues of (1) will have 
been removed, unless IG - BI = 0 (e.g., if some of the rows of B’ are linearly 
dependent on each other or on the lower k rows of A). Checking the rank of G - B 
provides an easy test of whether the number of infinite eigenvalues of (1) exceeds 
the number of zero rows of B. 

The computation of F and G is especially easy if we partition A as 

where H and P are (n-k) x n and k x n matrices, respectively. We then have 

F = $ , [ 1 G-B = ---: . c 1 
In some applications preservation of the sparsity of the original problem may be 

of concern. In this regard, we note that (a) the sparseness pattern of F is exactly 
the same as that of A (because E is diagonal) and (b) the sparseness pattern of 
G - B is that of B in the upper n -k rows and that of A in the lower k rows. This 
lack of fill-in, combined with the very low operations count (nk multiplications 
which can be easily vectorized with a vector length of n) make the method 
especially attractive for large sparse versions of (1) arising from problems in 
fluid mechanics, structural dynamics, and plasma physics, in which A and B are 
typically sparse. 
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The method described above preserves the order of the eigenvalue problem (as 
the “reciprocal” method does) and at the same time clearly distinguishes the truly 
infinite eigenvalues from any large but finite ones (as achieved by the “reduction of 
order” method). This is accomplished with a lower operations count kn than the 
O(kn’) of existing methods [3, 111. 
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